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I. INTRODUCTION

 

ulti-point boundary value problems for ordinary differential equations arise in variety

 

of areas of applied 
biologics, chemics, mathematics and physics have been studied. For

 

details, see for exemple, [1], [4] -[11] 
and referencs therein.

 

In particular, in a recent article [4], Sun and Wang studied a four-point boundary value

 

problem of the form

 
 

In [2], Kong and Kong, investigated following multi-point boundary value problem :

 

 

 

where and are nonegative parameter. They derived some conditions for the above

 

boundary value problems to 
have a unique solution and then studied the dependence of

 

this solution on the parameters and 

 

In another paper [5], Ricardo and Luis : 

 

 
 

 

M 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(4)(t) = f(t, u(t), u′′(t)), 0 < t < 1

u′(0) − h0u(0) = α0

u′(1) − h1u(1) = α1

a1u
(3)(t1) − b1u

′′(t1) = λ1

a2u
(3)(t2) + b2u

′′(t2) = λ2

0 ≤ t1 ≤ t2 ≤ 1 λ1 et λ2
λ1 λ2

u(4)(t) = f(t, u(t)), 0 < t < 1

αu(0) − βu′(0) = γu(1) + δu′(1) = 0

au′′(ξ1) − bu′′′(ξ1) = −λ, cu′′(ξ1) + du′′′(ξ1) = −μ

u′′(t) + a(t)f(u) = 0

u(0) =

m∑
i=1

aiu(ti) + λ, u(1) =

m∑
i=1

biu(ti) + μ

λ μ
λ μ.
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where and and are nonnegative parameters.

 

We

 

investigated the existence, uniqueness and parameter dependence continuous solution

 

of the problem (1.1)
-(1.5).

 

We will suppose the following conditions are satisfied :

 

CConditions 1.1

 

are nonegative constants and negative constants such that

 
 

Conditions 1.2

 
 

Conditions 1.3

 

is continuous and monotone increasing in

 

and

There exists such that : for all

 

and 

II. PRELIMINARIES AND SOME BASIC LEMMAS

 

Definition 1

 

Let be a reel Banach space with a norm a nonempty closed convex set of 

1. is said to be cone if for all and 

2. Every cone in definies a partial ordering in by 

 

3. A cone is said to be normal if there existe such that

 

4. A cone is said to be solid if the interior

 

 

 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

In the present paper, being inspired by [2] and [5], we investigated the fourth - order differential equation

and the four-point nonhomogeneous Sturn-Liouville boundary conditions

u(4)(t) = f(t, u(t), u′′(t)), 0 < t < 2π

u(0) = u(2π), u′(0) = u′(2π)

u′′(0) = u′′(2π), u′′′(0) = u′′′(2π)

u(0) = u(π) = u′′(0) = u′′(π) = 0

u(4)(t) = f(t, u(t), u′′(t)), 0 < t < 1 (1.1)

u′(0) − h0u(0) = α0 (1.2)

u′(1) − h1u(1) = α1 (1.3)

a1u
(3)(t1) − b1u

′′(t1) = λ1 (1.4)

a2u
(3)(t2) + b2u

′′(t2) = λ2 (1.5)

0 ≤ t1 ≤ t2 ≤ 1 λ1 λ2

α0, α1, h0, h1, a1, b1 a2, b2

a = −h0 + h1 + h0h1 > 0 and b = b1b2(t1 − t2) − a1b2 − a2b1 > 0.

h1α0 − h0α1 > 0, α0 − α1 − h1 > 0, a1 − b1t1 > 0, −b2t2 − a2 > 0.

• f : [0, +∞[×[0, +∞[×R −→ [0, +∞[ u u′′.

• 0 ≤ r < 1, krf(t, u(t), u′′) ≤ f(t, ku(t), ku′′(t)) t ∈ (0, 1),

k ∈ (0, 1).

E ‖.‖E and K E .

K αK ⊆ E α ≥ 0 K ∩ (−K) = {0E}.

K E E x ≤ y ⇐⇒ x− y ∈ K.

K

K

λ > 0

0 ≤ x ≤ y =⇒ ‖x‖E ≤ λ‖y‖E.
◦
K Kof is nonempty.

5. An operator is called r-concave if

for all 

A :
◦
K −→ ◦

K

krA(u) ≤ A(ku) 0 ≤ k ≤ 1, u ∈
◦
K,
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Lemma 2.1
Let be    Banach space , be a normal solid cone in and is

concave increasing operateur. Then has a unique fixed point in

proof
The proof of this lemma 2.1 is the same as [1]

Lemma 2.2
Suppose and If and

_ 

on the nonhomogeneous

boundary value problem :

has a unique solution

E u K E, 0 ≤ r < 1 A :
◦
K −→ ◦

K a r

A
◦
K.

a �= 0 b �= 0. g(t) ∈ C([0, 1]) g(t) ≥ 0 [0, 1],

u(4)(t) = g(t), 0 < t < 1

u′(0) − h0u(0) = α0, u′(1) − h1u(1) = α1

a1u
(3)(t1) − b1u

′′(t1) = λ1, a2u
(3)(t2) − b2u

′′(t2) = λ2

u(t) =

∫ 1

0

K1(t, x)

∫ t2

t1

K2(x, y)g(y)dydx+ h(t) + λ1ϕ1(t) + λ2ϕ2(t), 0 ≤ t ≤ 1

K1(t, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1+ h0x)(1+ h1(1− t))

a
, 0 ≤ x ≤ t ≤ 1

(1+ h0t)(1+ h1(1− x))

a
, 0 ≤ t ≤ x ≤ 1

K2(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(b1(y− t1) + a1)(b2(x− t2) − a2)

b
, y ≤ x, t1 ≤ y ≤ t2

(b1(x− t1) + a1)(b2(y− t2) − a2)

b
, x ≤ y, t1 ≤ x ≤ t2

h(t) =
(h1α0 − h0α1)t

a
+

α0 − α1 − h1

a
, 0 ≤ t ≤ 1

where

ϕ1(t) =
1

b

∫ 1

0

(b2(x− t2) − a2)K1(t, x)dx, 0 ≤ t ≤ 1

ϕ2(t) =
1

b

∫ 1

0

(b1(x− t1) + a1)K1(t, x)dx, 0 ≤ t ≤ 1

Proof
Putting 

By vertue of boundaries conditions (1.2)-(1.5), we obtain two following Sturn-Liouville boundary value problems :

u′′(t) = w(t), 0 ≤ t ≤ 1.

Fourth-Order Four Point Sturn-Liouville Boundary Value Problem With Non homogeneous Conditions
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(P1) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′′(t) = w(t), 0 < t < 1

u′(0) − h0u(0) = α0

u′(1) − h1u(1) = α1

(P2) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w′′(t) = g(t), 0 < t < 1

a1w
′(t1) − b1w(t1) = λ1

a2w
′(t2) − b2w(t2) = λ2

and

The Green's fonctions for Sturn-Liouville problems and are respectively and 

Then the solutions of the boundary value problems and are :

(P1 (P2) K1 K2.

(P1) (P2)

u(t) = −

∫ 1

0

K1(t, x)w(x)dx+
(h1α0 + h0α1)t

a
+

α1 − (h1 + 1)α0

a
(2.1)

w(t) = −

∫ t2

t1

K2(t, y)g(y)dy+
(b2(x− t2) − a2)λ1

b
+

(b1(x− t1) + a1)λ2
b

(2.2)

Substituting (2.2) into (2.1), we get

u(t) =

∫ 1

0

K1(t, x)

∫ t2

t1

K2(x, y)g(y)dydx+ h(t) + λ1ϕ1(t) + λ2ϕ2(t), 0 ≤ t ≤ 1.

This completes the proof of Lemma 2.2. 

Lemma 2.3

Let conditions 1.1 and 1.2 be fulfilled. Then

1. and for and 

2. and for 

III. MAIN RESULTS

Throughout this article, for                                 we denote by 

differentiable functions on with the norm and let 

We denote by the Banach space of all integrable functions on with the norm 

Theorem
 
3.1

 
(Existence)

Let conditions (1.1), (1.2) and (1.3) be fulfilled. Then the nonhomogeneous Sturn- Liouville boundary value problem 

has a unique positive solution for

�

K1(t, x) > 0 K2(t, y) > 0 t, x ∈ [0, 1] y ∈ [t1, t2].

h(t) > 0, ϕ1(t) > 0 ϕ2(t) > 0 t ∈ [0, 1].

k = 0, 1,· · · , Ck[0, 1]the Banach space of all    th  continuouslyk

u(t) [0, 1] ‖u‖ = max {|u(t)|, |u′(t)|, · · · |uk(t)|} E =

C2 [0, 1].
t∈[0, 1]

L [0, 1] u(t) [0, 1]

‖u‖L[0, 1] =

∫ 1

0

|u(x)|dx.

uλ1,λ2(t) λ1 > 0 λ2 > 0.all and 
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Proof

Let Then is a normal solid cone in and his

defined by

The rest of the proof is based on the following proposition

K = {u ∈ E : u(t) ≥ 0, 0 ≤ t ≤ 1}. K E interior is
◦
K = {u ∈ E : u(t) > 0, 0 ≤ t ≤ 1}.

Proposition 3.1

Let an operator define for any and by :Aλ1,λ2 :
◦
K −→ ◦

K λ1 > 0 λ2 > 0
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Then is concave with 

Proof

 

of

 

proposition

 

3.1

Let and 

_ 

it follows from (3.1)

By vertue the conditions (1.3), we obtain

Therefore, by inequality and (3.3), we obtain

From (3.4), We conclude that

Aλ1,λ2(u(t)) =

∫ 1

0

K1(t, x)

∫ t2

t1

K2(x, y)f(y, u(y), u
′′(y))dydx+ h(t) + λ1ϕ1(t) + λ2ϕ2(t). (3.1)

Aλ1,λ2 r 0 ≤ r < 1.

k ∈ [0, 1] u ∈
◦
K,

Aλ1,λ2(ku(t)) =

∫ 1

0

K1(t, x)

∫ t2

t1

K2(x, y)f(y, ku(y), ku
′′(y))dydx+h(t)+λ1ϕ1(t)+λ2ϕ2(t). (3.2)

Aλ1,λ2(ku(t)) ≥ kr

∫ 1

0

K1(t, x)

∫ t2

t1

K2(x, y)f(y, u(y), u
′′(y))dydx+ h(t) + λ1ϕ1(t) + λ2ϕ2(t).(3.3)

h(t) + λ1ϕ1(t) + λ2ϕ2(t) ≥ kr{h(t) + λ1ϕ1(t) + λ2ϕ2(t)}

Aλ1,λ2(ku(t)) ≥ kr

{∫ 1

0

K1(t, x)

∫ t2

t1

K2(x, y)f(y, u(y), u
′′(y))dydx+ h(t) + λ1ϕ1(t) + λ2ϕ2(t)

}
.

(3.4)

Aλ1,λ2(u(t)) ≤ krAλ1,λ2(ku(t)). (3.5)

Rest of proof of theorem (3.1)

It  follows  from lemma  2.1 and proposition  3.1 that has  a  unique  fixed  point 

which is the unique positive solution of the boundary value problem (1.1)-(1.5). This completes the proof. 

Lemma

 

3.1

Under the conditions of Theorem (3.1) . The solution of the boundary value problem
satisfies the following propertie :

Aλ1 ,λ2 u λ 1,λ 2
∈ ◦

K,

�

uλ1,λ2 (1.1) - (1.5)

lim
(λ1,λ2)→(+∞,+∞)

‖uλ1,λ2(t)‖E = +∞
Proof
By virtue of the lemma 2.3, and the definition of uλ1,λ2(t) :

uλ1,λ2(t) = Aλ1,λ2(uλ1,λ2(t))

=

∫ 1

0

K1(t, x)

∫ t2

t1

K2(x, y)f(y, uλ1,λ2(y), u
′′
λ1,λ2

(y))dydx+ h(t) + λ1ϕ1(t) + λ2ϕ2(t),

Fourth-Order Four Point Sturn-Liouville Boundary Value Problem With Non homogeneous Conditions
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It is clear that

From this last limit, we conclude :

we have
λ1ϕ1(t) + λ2ϕ2(t) ≤ ‖uλ1,λ2(t)‖E.

lim
(λ1,λ2)→(+∞,+∞)

[λ1ϕ1(t) + λ2ϕ2(t)] = +∞.

lim
(λ1,λ2)→(+∞,+∞)

‖uλ1,λ2(t)‖E = +∞.
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The proof of lemma 3.1 is complete. 

Theorem

 

3.2

 

(Continuous

 

dependence)

Under the conditions of previous theorem . The solution of the boundary value problem 

is continuous in and 

Proof

Let and such that and 

Put 

�

uλ1,λ2 (1.1)-

(1.5) , uλ1,λ2(t) λ1 λ2.

(λ01, λ
0
2) (λ11, λ

1
2), (0, 0) < (λ0

1, λ
0
2) < (λ11, λ

1
2)(0 < λ0

1 < λ1
1 0 < λ0

2 < λ1
2).

n =
{
n > 0 ; uλ01λ

0
2
(t) ≤ nuλ11λ

1
2
(t), t ∈ [0, 1]

}
.

We assert that 

Thus, we obtain 

Since is strictly increasing in and we have

for 

It is easy to see that is also strictly increasing in and 

For any we suppose with 

We have easily, 

n ≤ 1.

uλ01λ
0
2
(t) ≤ nuλ11λ

1
2
(t), t ∈ [0, 1].

Aλ1λ2 λ1 λ2,

uλ01λ
0
2
(t) = Aλ01λ

0
2
(uλ01λ

0
2
(t)) ≤ Aλ01λ

0
2
(uλ11λ

1
2
(t)) < Aλ11λ

1
2
(uλ11λ

1
2
(t)) = uλ11λ

1
2
(t)

uλ01λ
0
2
(t) < uλ11λ

1
2
(t), for t ∈ [0, 1]

uλ1λ2(t) λ1 λ2.

(λ01, λ0
2) > (0, 0), (λ1, λ2) → (λ01, λ

0
2), (λ01, λ

0
2) < (λ1, λ2).

uλ01λ
0
2
(t) < uλ1λ2(t), t ∈ [0, 1].

Put 

Then and for 

Set 

That implies and 

m =
{
m > 0, uλ1λ2(t) ≤ muλ01λ

0
2
(t), t ∈ [0, 1]

}
m ≥ 1, uλ01λ

0
2
(t) ≤ 1

m
uλ1λ2(t) t ∈ [0, 1].

Ωλ1λ2 = min

(
λ1

λ0
1

,
λ2

λ0
2

)
.

Ωλ1λ2 ≥ 1,

uλ01λ
0
2
(t) = Aλ01λ

0
2
(uλ01λ

0
2
(t)) ≥ Aλ01λ

0
2

(
1

m
uλ1λ2(t)

)
(3.6)

Aλ01λ
0
2

(
1

m
uλ1λ2(t)

)
>

1

Ωλ1λ2

Aλ1λ2

(
1

m
(uλ1λ2(t))

)
(3.7)

Aλ1λ2

(
1

m
uλ1λ2(t)

)
≥ 1

mrAλ1λ2 (uλ1λ2(t)) =
1

mruλ1λ2(t), r, t ∈ [0, 1] (3.8)
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)

)

Combining (3.6), (3.7) and (3.8), we can easily obtain :

Combining (3.9) and the definition of , it follows that

And so

uλ1λ2(t) < mrΩλ1λ2uλ01λ
0
2
(t), t ∈ [0, 1]. (3.9)

m

m ≤ Ω
1

1−r

λ1λ2
, 0 ≤ r ≤ 1.

uλ1λ2(t) ≤ muλ01λ
0
2
(t) ≤ (Ω

1
1−r

λ1λ2
uλ01λ

0
2
(t), 0 ≤ r ≤ 1, 0 ≤ t ≤ 1. (3.10)
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By virty of (3.10), we can write

From (3.11) and the fact that

‖uλ1λ2(t) − uλ01λ
0
2
(t)‖ ≤ (Ω

1
1−r

λ1λ2
− 1)‖uλ01λ

0
2
(t)‖, 0 ≤ t ≤ 1. (3.11)

lim
(λ1,λ2)→(λ01,λ

0
2)
Ωλ1λ2 = 1, it follows

Thus , finaly, is continuous in and This complete the proof of theorem 3.2.

lim
(λ1,λ2)→(λ01,λ

0
2)
‖uλ1λ2(t) − uλ01λ

0
2
(t)‖ = 0. (3.12)

uλ1,λ2(t) λ1 λ2. �
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